Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Acta Biomater ; 178: 83-92, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387748

RESUMEN

Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. STATEMENT OF SIGNIFICANCE: Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Masculino , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Huesos/patología , Neoplasias Óseas/terapia , Neoplasias Óseas/secundario , Neoplasias de la Próstata/patología , Osteoblastos/patología
2.
Sci Adv ; 10(5): eadg7887, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295166

RESUMEN

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Peso Molecular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Tirosina , Proteínas Tirosina Fosfatasas/metabolismo
3.
Endocrinology ; 164(6)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37154098

RESUMEN

The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Humanos , Masculino , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de Señal
4.
Endocrinology ; 164(6)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37192413

RESUMEN

Given the central role of the androgen receptor (AR) in prostate cancer cell biology, AR-targeted therapies have been the backbone of prostate cancer treatment for over 50 years. New data indicate that AR is expressed in additional cell types within the tumor microenvironment. Moreover, targeting AR for the treatment of prostate cancer has established side effects such as bone complications and an increased risk of developing cardiometabolic disease, indicating broader roles for AR. With the advent of novel technologies, such as single-cell approaches and advances in preclinical modeling, AR has been identified to have clinically significant functions in other cell types. In this mini-review, we describe new cancer cell-extrinsic roles for AR within the tumor microenvironment as well as systemic effects that collectively impact prostate cancer progression and patient outcomes.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Humanos , Masculino , Antagonistas de Receptores Androgénicos , Huesos/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Microambiente Tumoral
5.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186844

RESUMEN

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Rasgo Drepanocítico , Animales , Humanos , Ratones , Carcinoma de Células Renales/patología , Hipoxia/genética , Hipoxia/metabolismo , Riñón/metabolismo , Neoplasias Renales/patología , Rasgo Drepanocítico/genética , Rasgo Drepanocítico/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo
6.
Mol Cancer Res ; 21(1): 51-61, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36112348

RESUMEN

Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone. IMPLICATIONS: These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Proteómica , Neoplasias de la Próstata/metabolismo , Próstata/patología , Glucólisis , Fosforilación Oxidativa , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
7.
Sci Adv ; 8(51): eadd0014, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542704

RESUMEN

The foreign body response (FBR) is a clinically relevant issue that can cause malfunction of implanted medical devices by fibrotic encapsulation. Whereas inflammatory aspects of the FBR have been established, underlying fibroblast-dependent mechanisms remain unclear. We here combine multiphoton microscopy with ad hoc reporter mice expressing α-smooth muscle actin (αSMA) protein to determine the locoregional fibroblast dynamics, activation, and fibrotic encapsulation of polymeric materials. Fibroblasts invaded as individual cells and established a multicellular network, which transited to a two-compartment fibrotic response displaying an αSMA cold external capsule and a long-lasting, inner αSMA hot environment. The recruitment of fibroblasts and extent of fibrosis were only incompletely inhibited after depletion of macrophages, implicating coexistence of macrophage-dependent and macrophage-independent mediators. Furthermore, neither altering material type or porosity modulated αSMA+ cell recruitment and distribution. This identifies fibroblast activation and network formation toward a two-compartment FBR as a conserved, self-organizing process partially independent of macrophages.

8.
J Nucl Med ; 63(10): 1544-1550, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35177425

RESUMEN

223Ra is a bone-seeking, α-particle-emitting radionuclide approved for the treatment of patients with metastatic prostate cancer and is currently being tested in a variety of clinical trials for primary and metastatic cancers to bone. Clinical evaluation of 223Ra hematologic safety showed a significantly increased rate of neutropenia and thrombocytopenia in patients, hinting at myelosuppression as a side effect. Methods: In this study, we investigated the consequences of 223Ra treatment on bone marrow biology by combining flow cytometry, single-cell RNA sequencing, three-dimensional multiphoton microscopy and bone marrow transplantation analyses. Results: 223Ra accumulated in bones and induced zonal radiation damage confined to the bone interface, followed by replacement of the impaired areas with adipocyte infiltration, as monitored by 3-dimensional multiphoton microscopy ex vivo. Flow cytometry and single-cell transcriptomic analyses on bone marrow hematopoietic populations revealed transient, nonspecific 223Ra-mediated cytotoxicity on resident populations, including stem, progenitor, and mature leukocytes. This toxicity was paralleled by a significant decrease in white blood cells and platelets in peripheral blood-an effect that was overcome within 40 d after treatment. 223Ra exposure did not impair full hematopoietic reconstitution, suggesting that bone marrow function is not permanently hampered. Conclusion: Our results provide a comprehensive explanation of 223Ra reversible effects on bone marrow cells and exclude long-term myelotoxicity, supporting safety for patients.


Asunto(s)
Partículas alfa , Médula Ósea , Huesos , Citometría de Flujo , Humanos , Masculino , Radioisótopos
9.
J Nucl Med ; 63(7): 1039-1045, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34711616

RESUMEN

223Ra is an α-emitter approved for the treatment of bone metastatic prostate cancer (PCa), which exerts direct cytotoxicity toward PCa cells near the bone interface, whereas cells positioned in the core respond poorly because of short α-particle penetrance. ß1 integrin (ß1I) interference has been shown to increase radiosensitivity and significantly enhance external-beam radiation efficiency. We hypothesized that targeting ß1I would improve 223Ra outcome. Methods: We tested the effect of combining 223Ra and anti-ß1I antibody treatment in PC3 and C4-2B PCa cell models expressing high and low ß1I levels, respectively. In vivo tumor growth was evaluated through bioluminescence. Cellular and molecular determinants of response were analyzed by ex vivo 3-dimensional imaging of bone lesions and by proteomic analysis and were further confirmed by computational modeling and in vitro functional analysis in tissue-engineered bone mimetic systems. Results: Interference with ß1I combined with 223Ra reduced PC3 cell growth in bone and significantly improved overall mouse survival, whereas no change was achieved in C4-2B tumors. Anti-ß1I treatment decreased the PC3 tumor cell mitosis index and spatially expanded 223Ra lethal effects 2-fold, in vivo and in silico. Regression was paralleled by decreased expression of radioresistance mediators. Conclusion: Targeting ß1I significantly improves 223Ra outcome and points toward combinatorial application in PCa tumors with high ß1I expression.


Asunto(s)
Neoplasias Óseas , Integrinas , Neoplasias de la Próstata , Animales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/radioterapia , Neoplasias Óseas/secundario , Línea Celular Tumoral , Humanos , Integrina beta1/metabolismo , Integrinas/antagonistas & inhibidores , Masculino , Ratones , Neoplasias de la Próstata/patología , Proteómica , Resultado del Tratamiento
10.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885132

RESUMEN

Renal medullary carcinoma (RMC) is a lethal malignancy affecting individuals with sickle hemoglobinopathies. Currently, no modifiable risk factors are known. We aimed to determine whether high-intensity exercise is a risk factor for RMC in individuals with sickle cell trait (SCT). We used multiple approaches to triangulate our conclusion. First, a case-control study was conducted at a single tertiary-care facility. Consecutive patients with RMC were compared to matched controls with similarly advanced genitourinary malignancies in a 1:2 ratio and compared on rates of physical activity and anthropometric measures, including skeletal muscle surface area. Next, we compared the rate of military service among our RMC patients to a similarly aged population of black individuals with SCT in the U.S. Further, we used genetically engineered mouse models of SCT to study the impact of exercise on renal medullary hypoxia. Compared with matched controls, patients with RMC reported higher physical activity and had higher skeletal muscle surface area. A higher proportion of patients with RMC reported military service than expected compared to the similarly-aged population of black individuals with SCT. When exposed to high-intensity exercise, mice with SCT demonstrated significantly higher renal medulla hypoxia compared to wild-type controls. These data suggest high-intensity exercise is the first modifiable risk factor for RMC in individuals with SCT.

11.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593636

RESUMEN

Castration-resistant prostate cancer (CRPC) is an advanced subtype of prostate cancer with limited therapeutic options. Here, we applied a systems-based modeling approach called kinome regularization (KiR) to identify multitargeted kinase inhibitors (KIs) that abrogate CRPC growth. Two predicted KIs, PP121 and SC-1, suppressed CRPC growth in two-dimensional in vitro experiments and in vivo subcutaneous xenografts. An ex vivo bone mimetic environment and in vivo tibia xenografts revealed resistance to these KIs in bone. Combining PP121 or SC-1 with docetaxel, standard-of-care chemotherapy for late-stage CRPC, significantly reduced tibia tumor growth in vivo, decreased growth factor signaling, and vastly extended overall survival, compared to either docetaxel monotherapy. These results highlight the utility of computational modeling in forming physiologically relevant predictions and provide evidence for the role of multitargeted KIs as chemosensitizers for late-stage, metastatic CRPC.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Simulación por Computador , Docetaxel/farmacología , Humanos , Masculino , Ratones , Células PC-3
12.
Front Bioeng Biotechnol ; 9: 797555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145962

RESUMEN

The Foreign body response (FBR) is a major unresolved challenge that compromises medical implant integration and function by inflammation and fibrotic encapsulation. Mice implanted with polymeric scaffolds coupled to intravital non-linear multiphoton microscopy acquisition enable multiparametric, longitudinal investigation of the FBR evolution and interference strategies. However, follow-up analyses based on visual localization and manual segmentation are extremely time-consuming, subject to human error, and do not allow for automated parameter extraction. We developed an integrated computational pipeline based on an innovative and versatile variant of the U-Net neural network to segment and quantify cellular and extracellular structures of interest, which is maintained across different objectives without impairing accuracy. This software for automatically detecting the elements of the FBR shows promise to unravel the complexity of this pathophysiological process.

13.
BMC Cancer ; 20(1): 605, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600282

RESUMEN

BACKGROUND: Bone metastasis is the most frequent complication in prostate cancer patients and associated outcome remains fatal. Radium223 (Rad223), a bone targeting radioisotope improves overall survival in patients (3.6 months vs. placebo). However, clinical response is often followed by relapse and disease progression, and associated mechanisms of efficacy and resistance are poorly understood. Research efforts to overcome this gap require a substantial investment of time and resources. Computational models, integrated with experimental data, can overcome this limitation and drive research in a more effective fashion. METHODS: Accordingly, we developed a predictive agent-based model of prostate cancer bone metastasis progression and response to Rad223 as an agile platform to maximize its efficacy. The driving coefficients were calibrated on ad hoc experimental observations retrieved from intravital microscopy and the outcome further validated, in vivo. RESULTS: In this work we offered a detailed description of our data-integrated computational infrastructure, tested its accuracy and robustness, quantified the uncertainty of its driving coefficients, and showed the role of tumor size and distance from bone on Rad223 efficacy. In silico tumor growth, which is strongly driven by its mitotic character as identified by sensitivity analysis, matched in vivo trend with 98.3% confidence. Tumor size determined efficacy of Rad223, with larger lesions insensitive to therapy, while medium- and micro-sized tumors displayed up to 5.02 and 152.28-fold size decrease compared to control-treated tumors, respectively. Eradication events occurred in 65 ± 2% of cases in micro-tumors only. In addition, Rad223 lost any therapeutic effect, also on micro-tumors, for distances bigger than 400 µm from the bone interface. CONCLUSIONS: This model has the potential to be further developed to test additional bone targeting agents such as other radiopharmaceuticals or bisphosphonates.


Asunto(s)
Neoplasias Óseas/radioterapia , Braquiterapia/métodos , Modelos Biológicos , Neoplasias de la Próstata/patología , Radio (Elemento)/administración & dosificación , Animales , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/secundario , Línea Celular Tumoral , Simulación por Computador , Progresión de la Enfermedad , Humanos , Microscopía Intravital , Masculino , Ratones , Microscopía Fluorescente , Neoplasias de la Próstata/radioterapia , Tolerancia a Radiación , Tibia/diagnóstico por imagen , Tibia/patología , Tibia/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Natl Cancer Inst ; 111(10): 1042-1050, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657953

RESUMEN

BACKGROUND: Bone-targeting radiotherapy with Radium-223 (Rad-223), a radioisotope emitting genotoxic alpha-radiation with limited tissue penetrance (∼100 µm), prolongs the survival of patients with metastatic prostate cancer (PCa). Confoundingly, the clinical response to Rad-223 is often followed by detrimental relapse and progression, and whether Rad-223 causes tumor-cell directed cytotoxicity in vivo remains unclear. We hypothesized that limited radiation penetrance in situ defines outcome. METHODS: We tested Rad-223 overall response by PC3 and C4-2B human PCa cell lines in mouse bones (n = 5-18 tibiae per group). Rad-223 efficacy at subcellular resolution was determined by intravital microscopy analysis of dual-color fluorescent PC3 cells (n = 3-4 mice per group) in tissue-engineered bone constructs. In vivo data were fed into an in silico model to predict Rad-223 effectiveness in lesions of different sizes (1-27, 306 initial cells; n = 10-100 simulations) and the predictions validated in vivo by treating PCa tumors of varying sizes in bones (n = 10-14 tibiae per group). Statistical tests were performed by two-sided Student t test or by one-way ANOVA followed by Tukey's post-hoc test. RESULTS: Rad-223 (385 kBq/kg) delayed the growth (means [SD]; comparison with control-treated mice) of PC3 (6.7 × 105[4.2 × 105] vs 2.8 × 106 [2.2 × 106], P = .01) and C4-2B tumors in bone (7.7 × 105 [4.0 × 105] vs 3.5 × 106 [1.3 × 106], P < .001). Cancer cell lethality in response to Rad-223 (385 kBq/kg) was profound but zonally confined along the bone interface compared with the more distant tumor core, which remained unperturbed (day 4; 13.1 [2.3%] apoptotic cells, 0-100 µm distance from bone vs 3.6 [0.2%], >300 µm distance; P = .01).In silico simulations predicted greater efficacy of Rad-223 on single-cell lesions (eradication rate: 88.0%) and minimal effects on larger tumors (no eradication, 16.2% growth reduction in tumors of 27 306 cells), as further confirmed in vivo for PC3 and C4-2B tumors. CONCLUSIONS: Micro-tumors showed severe growth delay or eradication in response to Rad-223, whereas macro-tumors persisted and expanded. The relative inefficacy in controlling large tumors points to application of Rad-223 in secondary prevention of early bone-metastatic disease and regimens co-targeting the tumor core.


Asunto(s)
Neoplasias Óseas/radioterapia , Neoplasias Óseas/secundario , Neoplasias de la Próstata/patología , Radio (Elemento)/efectos adversos , Animales , Neoplasias Óseas/diagnóstico , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Humanos , Masculino , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Radio (Elemento)/uso terapéutico , Carga Tumoral/efectos de la radiación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Biomaterials ; 197: 296-304, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30682644

RESUMEN

Mechanistic analysis of metastatic prostate cancer (PCa) biology and therapy response critically depends upon clinically relevant three-dimensional (3D) bone-like, organotypic culture. We here combine an engineered bone-mimetic environment (BME) with longitudinal microscopy to test the growth and therapy response of 3D PCa tumoroids. Besides promoting both tumor-cell autonomous and microenvironment-dependent growth in PCa cell lines and patient-derived xenograft cells, the BME enables in vivo-like tumor cell response to therapy, and reveals bone stroma dependent resistance to chemotherapy and BME-targeted localization and induction of cytoxicity by Radium-223. The BME platform will allow the propagation, compound screening and mechanistic dissection of patient-derived bone tumor isolates and applications toward personalized medicine.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/efectos de los fármacos , Docetaxel/farmacología , Humanos , Masculino , Ratones SCID , Células PC-3 , Neoplasias de la Próstata/patología , Radio (Elemento)/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Células Tumorales Cultivadas/efectos de los fármacos , Células Tumorales Cultivadas/patología , Microambiente Tumoral/efectos de los fármacos
16.
Sci Transl Med ; 10(452)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068572

RESUMEN

Intravital multiphoton microscopy (iMPM) in mice provides access to cellular and molecular mechanisms of metastatic progression of cancers and the underlying interactions with the tumor stroma. Whereas iMPM of malignant disease has been performed for soft tissues, noninvasive iMPM of solid tumor in the bone is lacking. We combined miniaturized tissue-engineered bone constructs in nude mice with a skin window to noninvasively and repetitively monitor prostate cancer lesions by three-dimensional iMPM. In vivo ossicles developed large central cavities containing mature bone marrow surrounded by a thin cortex and enabled tumor implantation and longitudinal iMPM over weeks. Tumors grew inside the bone cavity and along the cortical bone interface and induced niches of osteoclast activation (focal osteolysis). Interventional bisphosphonate therapy reduced osteoclast kinetics and osteolysis without perturbing tumor growth, indicating dissociation of the tumor-stroma axis. The ossicle window, with its high cavity-to-cortex ratio and long-term functionality, thus allows for the mechanistic dissection of reciprocal epithelial tumor-bone interactions and therapy response.


Asunto(s)
Neoplasias Óseas/terapia , Progresión de la Enfermedad , Microscopía Intravital/métodos , Osteólisis/patología , Animales , Médula Ósea/irrigación sanguínea , Médula Ósea/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Catepsina K/metabolismo , Línea Celular Tumoral , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Miniaturización , Células del Estroma/patología , Ingeniería de Tejidos , Andamios del Tejido/química , Resultado del Tratamiento , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/uso terapéutico
18.
Oncotarget ; 7(45): 72716-72732, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27683038

RESUMEN

Chromogranin A (CgA), a neuroendocrine secretory protein, and its fragments are present in variable amounts in the blood of normal subjects and cancer patients. We investigated whether circulating CgA has a regulatory function in tumor biology and progression. Systemic administration of full-length CgA, but not of fragments lacking the C-terminal region, could reduce tumor growth in murine models of fibrosarcoma, mammary adenocarcinoma, Lewis lung carcinoma, and primary and metastatic melanoma, with U-shaped dose-response curves. Tumor growth inhibition was associated with reduction of microvessel density and blood flow in neoplastic tissues. Neutralization of endogenous CgA with antibodies against its C-terminal region (residues 410-439) promoted tumor growth. Structure-function studies showed that the C-terminal region of CgA contains a bioactive site and that cleavage of this region causes a marked loss of anti-angiogenic and anti-tumor potency. Mechanistic studies showed that full-length CgA could induce, with a U-shaped dose-response curve, the production of protease nexin-1 in endothelial cells, a serine protease inhibitor endowed of anti-angiogenic activity. Gene silencing or neutralization of protease nexin-1 with specific antibodies abolished both anti-angiogenic and anti-tumor effects of CgA. These results suggest that circulating full-length CgA is an important inhibitor of angiogenesis and tumor growth, and that cleavage of its C-terminal region markedly reduces its activity. Pathophysiological changes in CgA blood levels and/or its fragmentation might regulate disease progression in cancer patients.


Asunto(s)
Cromogranina A/sangre , Neoplasias/sangre , Neoplasias/patología , Inhibidores de la Angiogénesis/farmacología , Animales , Anticuerpos Neutralizantes/farmacología , Antineoplásicos/farmacología , Biomarcadores , Línea Celular Tumoral , Cromogranina A/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Silenciador del Gen , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Melanoma Experimental , Ratones , Neoplasias/genética , Neovascularización Patológica/tratamiento farmacológico , Pruebas de Neutralización , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/farmacología , Proteínas Recombinantes , Serpina E2/genética , Serpina E2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oncotarget ; 7(27): 41725-41736, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27203389

RESUMEN

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of leukemic B cells in peripheral blood, bone marrow (BM) and lymphoid tissues, and by their recirculation between these compartments. We observed that circulating chromogranin A (CgA) and its N-terminal fragment (called vasostatin-1, CgA1-76), two neuroendocrine secretory polypeptides that enhance the endothelial barrier function, are present in variable amounts in the blood of CLL patients. Studies in animal models showed that daily administration of full-length human CgA1-439 (0.3 µg, i.v., or 1.5 µg/mouse, i.p.) can reduce the BM/blood ratio of leukemic cells in Eµ-TCL1 mice, a transgenic model, and decrease BM, lung and kidney infiltration in Rag2-/-γc-/- mice engrafted with human MEC1 CLL cells, a xenograft model. This treatment also reduced the loss of body weight and improved animal motility. In vitro, CgA enhanced the endothelial barrier integrity and the trans-endothelial migration of MEC1 cells, with a bimodal dose-response curve. Vasostatin-1, but not a larger fragment consisting of N-terminal and central regions of CgA (CgA1-373), inhibited CLL progression in the xenograft model, suggesting that the C-terminal region is crucial for CgA activity and that the N-terminal domain contains a site that is activated by proteolytic cleavage. These findings suggest that circulating full-length CgA and its fragments may contribute to regulate leukemic cell trafficking and reduce tissue infiltration in CLL.


Asunto(s)
Cromogranina A/farmacología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Anciano , Animales , Línea Celular Tumoral , Movimiento Celular , Células Cultivadas , Cromogranina A/sangre , Cromogranina A/química , Progresión de la Enfermedad , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Inhibidores de la Bomba de Protones/uso terapéutico
20.
Proc Natl Acad Sci U S A ; 113(8): 2223-8, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858439

RESUMEN

Circulating cancer cells can putatively colonize distant organs to form metastases or to reinfiltrate primary tumors themselves through a process termed "tumor self-seeding." Here we exploit this biological attribute to deliver tumor necrosis factor alpha (TNF), a potent antitumor cytokine, directly to primary and metastatic tumors in a mechanism that we have defined as "tumor self-targeting." For this purpose, we genetically engineered mouse mammary adenocarcinoma (TSA), melanoma (B16-F10), and Lewis lung carcinoma cells to produce and release murine TNF. In a series of intervention trials, systemic administration of TNF-expressing tumor cells was associated with reduced growth of both primary tumors and metastatic colonies in immunocompetent mice. We show that these malignant cells home to tumors, locally release TNF, damage neovascular endothelium, and induce massive cancer cell apoptosis. We also demonstrate that such tumor-cell-mediated delivery avoids or minimizes common side effects often associated with TNF-based therapy, such as acute inflammation and weight loss. Our study provides proof of concept that genetically modified circulating tumor cells may serve as targeted vectors to deliver anticancer agents. In a clinical context, this unique paradigm represents a personalized approach to be translated into applications potentially using patient-derived circulating tumor cells as self-targeted vectors for drug delivery.


Asunto(s)
Neoplasias Experimentales/terapia , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Apoptosis , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/secundario , Carcinoma Pulmonar de Lewis/terapia , Ingeniería Celular , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Sistemas de Liberación de Medicamentos , Endotelio Vascular/patología , Femenino , Humanos , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/secundario , Neoplasias Mamarias Experimentales/terapia , Melanoma Experimental/patología , Melanoma Experimental/secundario , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/patología , Neoplasias Experimentales/secundario , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapéutico , Transducción Genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...